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Direct observation of grain-boundary 
dislocations in the FeCo alloy 

Part 1 Theoretical observations 

M. d. M A R C I N K O W S K I ,  WEN FENG TSENG* ,  E. S. D W A R A K A D A S A t  
Engineering Materials Group, and Department of Mechanical Engineering, University of 
Maryland, College Park, Maryland, USA 

A unified dislocation theory of grain boundaries proposed earlier for simple cubic crystals 
has been extended to include the case of ordered and disordered body-centred-cubic 
structures. Pure symmetric and asymmetric tilt and pure twist boundaries have been 
treated in detail and extended to an arbitrary grain boundary. It is shown that a unique set 
of coincidence site lattices exists for both the symmetric and asymmetric boundaries and 
that each of these sets, in turn, depends upon the rotation axis which characterizes the 
boundary. Furthermore, a unique set of grain-boundary dislocations is associated with 
each of these coincidence site lattices. The results are then applied to the transmission 
electron microscopy studies carried out in Part 2 of the present study. 

1. Introduction 
A generalized theory of grain boundaries has 
been proposed earlier whereby the grain- 
boundary structure can be described as being 
comprised of various combinations of crystal 
lattice dislocations (CLD) associated with the 
two adjacent grains [1]. This dislocation theory 
of  grain boundaries was next extended to both 
symmetric [2] and asymmetric [3] tilt boundaries, 
as well as to twist boundaries [4] in both 
ordered and disordered simple cubic (sc) 
structures. The purpose of the present manu- 
script is to extend this analysis to that of a real 
crystal, in particular, the body-centred-cubic 
(bcc) lattice and its ordered counterpart, the 
CsC1 structure. These results will then be com- 
pared with experimental findings obtained with 
both the ordered and disordered FeCo alloy 
using transmission electron microscopy tech- 
niques. 

2. Symmetr ic  tilt boundaries 
In earlier studies [2-4] the rotation axes s 
associated with the grain boundaries were all 
chosen as [100], i.e. the four-fold symmetry 

axis. This can also be done for the b cc  lattice 
as shown in Fig. 1 where it will be noted that two 
distinct layers of atoms comprise the atom 
configuration. Unlike the case of the simple cubic 
lattice where the Burgers vector was a0(100), it 
is now a0/2(1 1 1) for the bcc  crystal. The grain 
boundary shown in Fig. 1 is one of symmetric 
tilt type of  angular naisorientation 53.1 ~ and is a 
primary coincidence site boundary. This can be 
verified by first considering the following 
relation: 

Nb~ 
tan 0/2 = M d~ (1) 

In the above equation, b~ is the component of a 
single CLD or combination thereof along the 
x-axis in either grain while du is the spacing 
between planes along the y direction in either 
grain. N and M are simply integers and represent 
physically the number of single CLD or com- 
binations thereof associated with a given plane 
and the number of interplanar spacings between 
these CLD, respectively. The CLD are shown to 
occur in pairs at the grain boundary in Fig. 1 
each of which is derived from one of  the two 
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Figure 1 Symmetric high angle tilt boundary with 
primary coincidence angle 0c P = 53.1 ~ in a body- 
centred-cubic lattice. Rotation axis is [001] and is 
normal to the drawing. 

grains. Each CLD pair may be visualized as a 
grain-boundary dislocation (GBD) [2] of mag- 
nitude given by 

bob = 2 b~ cos 0/2. (2) 

It is apparent that b,  in Equation 1 represents 
only the edge portion of the single CLD or 
CLD combination and has no component of the 
Burgers vector which lies in the plane of the 
boundary. The screw components associated 
with the CLD from adjacent grains as well as 
the edge components with Burgers vector that 
lie in the plane of the boundary must be such 
that they cancel one another in order that no 
long range stresses be generated at the boun- 
dary. With the above considerations in mind, b,  
may be expressed as follows: 

H h + K k + L I  - (3) 
bx = b~.= 4 ( H  ~, + K.~ + L.~) 4(h,, + k.~ + l 2) 

where b~  is the magnitude of the Burgers vector, 
and the subscript xz  emphasizes that the Burgers 
vector itself must lie in the xz  plane. The 
quantity b~  may be associated with a single 
CLD or combination thereof such that it 
possesses no component along the y-axis, while 
h, k, l are the indices associated with the Burgers 
vector of this dislocation and H, K, L are the 
indices associated with the x 1 or x 2 directions. It 
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is important to note that the b~  associated with 
the dislocation from each grain must be such that 
their z components cancel. The interplanar 
spacing du is given simply by 

a o  
d~ = ~/(hp~ + kp ~ + &)  (4) 

where hp, k m lp are the indices pertaining to the 
slip plane associated with b~. Combining Equa- 
tions 1, 3 and 4 

N b , ~  
tan 0/2 = M ao ~/(hP~ + kp2 + lp2) 

Hh + Kk  + LI (5) 
4 ( m  + K2 + L ,/(h2 + + 19" 

Equation 5 is just the coincidence site relation, 
similar to that given by tan 0/2 = N / M ,  for a 
sc crystal with rotation axis (100) [2]. In the 
present case, however, Equation 5 represents the 
coincidence site relation for a bcc crystal of 
arbitrary rotation axis. 

Equation 5 is most readily applied to the case 
shown in Fig. 1 by referring to the [001] 
standard projection shown in Fig. 2. From this 
figure it is apparent that the GBD can com- 
prise single CLD with Burgers vectors given by 
�89 a 0 [111 ]. Thus, the values of h, k and l are i 11 
whereas, that of b~  is ~/3 ao/2 while those of H, 
K and L are 110 and h v, k v and lp are iT0. 
Upon substitution of these quantities into 
Equation 5, the following relation obtains: 

I (i10) U 
tan 0/2 [001] = M (6) 

where the subscript [001] corresponds to the 
rotation axis associated with the tilt boundary, 
while the superscript (110) designates the mirror 
plane of the boundary defined with respect to the 
original perfect crystal or equivalently the mean 
([ 10) plane associated with both grains com- 
prising the grain boundary. This relation is 
exactly the same as that obtained for the sc 
crystal. Equation 6 also holds for face-centred- 
cubic (fcc) crystals and has been used as the 
basis for the analysis of GBD in gold [5, 6]. 
More specifically, reference to Fig. 1 shows that 
N = 1 while M = 2. A primary coincidence site 
boundary corresponds to N = 1 [4]. It is also 
important to note that in order that the screw 
components cancel, the Burgers vector of the 
CLD associated with grain no. 1 must be �89 
ao [i11], while that in grain no. 2 must be 
�89 a 0 [111 ]. Still another requirement that must be 
met in the choice of b~ and d u in Equation 1 for 
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Figure 2 Standard projections associated with a cubic 
crystal for the orientations indicated. 

a given grain-boundary rotation axis is that the 
crystat must possess a mirror plane passing 
through both the rotation axis and the slip plane 
normal. For example, in the case just considered, 
the rotation axis was [001 ] and the normal to the 
slip plane was [ i i0] ,  both of which lie in, and 
thus define, the (110) mirror plane, as can be 
readily seen by reference to Fig. 2. It is apparent 
from this definition that all poles associated 
with permissible mirror planes will lie on the 
great circles representing the planes of pro- 
jection in Fig. 2. 

Reference to Fig. 2 shows that a second dis- 
tinct type of mirror plane exists for the [001] 
standard projection which passes through both 
[001] and [010]. The y-axis can thus be chosen 
along [0]'0] and the x-axis along [700]. On the 
other hand, unlike the previous mirror plane, the 
Burgers vectors associated with the new mirror 
plane in Fig. 2 have components along both the 
y- and z-axes. Both the y and z components of the 
Burgers vector in grain no. 1 can be eliminated 
by combining the dislocation pair with Burgers 
vector �89 ao[il 1] and �89 a0 [1i l ]  to give a resul- 
ting dislocation with Burgers vector a0 [I00]. 
A similar dislocation can be made in grain 

no. 2. It follows that h, k and l are given by 700 
whereas bx~ = b~ = a0 while H, K and L are 
i00 and hp, kp and lv are 020. It is important to 
note that values of hv, kv and lp are chosen 
commensurate with the smallest interplanar 
spacing since it is possible for the CLD com- 
bination given by a0 [i00] to be associated with 
any of these planes. From Equations 3 and 4 it 
thus follows that b~ = ao while d~ = ao/2, 
respectively, which leads to the following rela- 
tion: 

I (i00) 2N 
tan 0/2 [001] = -M " ( 7 )  

It is apparent that the above relation differs 
from that of Equation 6. The meaning of this 
difference can be seen by referring to Fig. 3 in 
which N = 1 and M = 4 which as in the case of 
Fig. 1 again produces a 53.1 ~ symmetric tilt 
boundary. However, the present grain boundary 
defined in terms of the above values of b, = ao 
and d~ = ao/2 is markedly different from the 
boundary shown in Fig. I corresponding to bx = 
~/2 ao/2 and d u = ,]2 ao/2. In particular, large 
gaps are left within the grain boundary of Fig. 
3. These gaps may be eliminated, however, by 
visualizing each dislocation component b~ which 
comprises the grain-boundary dislocation to be 
split into halves of magnitude b~/2 as shown by 
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Figure 3 Second type of symmetric high angle tilt boun- 
dary with primary coincidence angle 0o P = 53.1 ~ in a 
body-centred-cubic lattice. Rotation axis is [001 ] and is 
normal to the drawing, v'~ 
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Figure 4 Same boundary as that shown in Fig. 3 but after 
the grain-boundary dislocations have dissociated into 
partials by climb. 

the normal and reversed L symbols in Fig. 3. 
These half dislocations can then be visualized 
as undergoing downward climb, as shown by the 
arrows in Fig. 3, resulting in the final grain- 
boundary configuration shown in Fig. 4. The 
resulting grain-boundary configuration can then 
be visualized as being comprised of half GBD 
each of magnitude b GB/2. A similar type of climb 
process has been invoked previously to show the 
relationship between primary and secondary 
coincidence angle boundaries [2]. In summary 
then, two distinct types of reference axis exist for 
the [001] rotation axes which can be used to 
describe two unique types of symmetric tilt 
boundary and these reference axes are oriented 
45 ~ with respect to one another. Further sig- 
nificance will be associated with these two types 
of axes in the discussion of symmetric twist 
boundaries which will follow later. 

Equation 5 can next he applied to the case of a 
symmetric tilt boundary with a [110] rotation 
axis by referring to the standard [110] pro- 
jection shown in Fig. 2. As in the case of the 
[001] rotation axis discussed previously, two 
distinct types of symmetric grain boundary can 
be described. In the first case h, k and l are 
chosen as 1 1 i while b~  = ~/3 ao/2, whereas 
H, K and L are 0 0 i  and hp, kp and lp are given 
by i 10 so that Equation 5 becomes 
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Figure 5 Symmetric high angle tilt boundary with primary 
coincidence angle 0e P = 70.5 ~ in a body-centred-cubic 
lattice. Rotation axis is [110] and is normal to the 
drawing. 

[ (001) N ~/2 
tan 0/2 [110] = _~/--2- " (8) 

The above trigonometric function also applies for 
fcc  and sc crystals. Fig. 5 shows a primary 
symmetric tilt boundary given by Equation 6 
where N = 1 and M = 1 leading to a misorienta- 
tion angle 0e l" = 70.5 ~ where the superscript P 
refers to primary and the subscript c refers to 
coincidence site lattice. The coincidence site 
lattice concept will be discussed in detail shortly. 

Reference to Fig. 2 shows that a second 
mirror plane exists for the [110] standard 
projection which passes through both [110] and 
[001]. The y-axis can thus be chosen along 
[001 ] and the x-axis along [110]. However, the 
Burgers vectors of the CLD associated with the 
new mirror plane in Fig. 2 have components 
along the y-axis. In order to eliminate these 
components, it is necessary to obtain b~ by 
combining a pair of CLD such as �89 a0 [111] 
and �89 a 0 [i 11 ] within each of the two adjacent 
grains to give a net Burgers vector equal to 
a0 [i 10]. Note that this resultant dislocation has 
no screw components, i.e. no component of the 
Burgers vector along the z direction. In order to 
determine the coincidence site lattice rela- 
tionship, it follows from the above discussion 
that h, k and l equals T 10, the corresponding 
value o f b ~  - b~ = 42a0,  whi leH,  K a n d L  
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Figure 6 Second representa t ion  o f  h igh  angle tilt b o u n d a r y  
with p r imary  coincidence angle Oe s = 70.5 ~ in a body- 
centred-cubic lattice. Rotation axis is [110] and is 
normal to the drawing. 

equals i 10 and hp, kp and lp equals 002 which 
gives 

[ ( i  10)  _ N 2 
tan O/2 (9) 

I [110] M " 

As expected from the results obtained for a 
[001] rotation axis, the two distinct mirror 
planes associated with the [110] rotation axis 
give rise to two different coincidence site 
boundary relationships. The difference between 
the two can again be seen by referring to Fig. 6 
which, as in the case of Fig. 5, is also a primary 
coincidence site angle but with N = 1 and M = 4. 
Following the procedure employed for Fig. 4, the 
GBD illustrated in Fig. 6 are shown dissociated 
into half GBD in order that the large voids that 
would otherwise be present in the boundary are 
eliminated. 

Equation 5 employed in conjunction with the 
[111] standard projection shown in Fig. 2 can 
also be used to determine the coincidence site 
lattice orientations associated with the symmetric 
tilt boundaries in which the rotation axes are 
[1 11 ]. There are two mirror planes associated 
with the [111 ] tilt axis given by (i 10) and (1 i2). 
Consider first (110). From Fig. 2 CLD of type 
�89 a o [ i l  1] and �89 a0 [111] within each grain can 
be combined to give a0 [110]. It follows, there- 
fore, that h, k and l are given by i l 0  while 
b~,z = b~ = ~/2a and H, K and L are i 10 while 

hv, kp and lp equal i i 2  so that d~ = an~x~6 and 
Equation 5 becomes 

tan 0/2 [ ( i l 0 )  _ N2~/3. (10) 
[111] M 

i 

Fig. 7 shows a symmetric tilt boundary corres- 
ponding to Equation 10 in which N = 1 and 
M = 4 giving 0e P = 81.8 ~ Again, as in Figs. 4 
and 6 the GBD associated with Fig. 7 are seen 
to have dissociated into half GBD. 
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Figure 7 Symmetric angle tilt boundary with primary 
coincidence angle 0e P = 81.8 ~ in a body-centred-cubic  
lattice. Rota t ion  axis is [1 1 1] and  is no rma l  to the  
drawing. 

The second coincidence site lattice angle 
relation associated with the [111 ] rotation axis 
in Fig. 2 is based upon the (112) mirror plane. 
For this particular situation bxz is obtained by 
combining the two CLD given by �89 a0 [i 11 ] and 
1 a0 [ l i l ]  to obtain a 0 [001] or else using the 
single CLD �89 a 0 [11 i]. In either case they lead to 
the following coincidence site angle relation: 

( i i2)  N243 (1l) 
tan 0/2 [111] = M3 

Realizing that bx associated with the above 
relation is equal to 2ao/~/6, inspection of Fig. 7 
shows that symmetric tilt boundaries based upon 
Equation 11 will also be comprised of half GBD. 

Finally, Fig. 2 shows the standard [112] 
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Figure 8 Symmetric high angle tilt boundary  with pr imary 
coincidence angle 0c P = 62.8 ~ in a body-centred-cubic 
lattice. Rota t ion axis is [112]. 

projection which again can be seen to possess 
two mirror planes, i.e. (i  10) and ( i i  1). Using 
the procedures discussed earlier, the coincidence 
site angle relation associated with the first of 
these mirror planes is readily found to be given 
by 

tan 0/2 I (i[112110) = MN ~/6 (12) 

while b= = ~/2 a 0 and du = ~/3 ao/3. Fig. 8 
shows a primary symmetric tilt boundary based 
upon Equation 12 where N -- 1 and M = 8 
leading to 0e • = 62.8 ~ Here again, the grain 
boundary is seen to be composed of half GBD, 
since two extra half planes are associated with 
b~ = ~/2 a 0. 

For the second (i i 1) mirror plane associated 
with the [1 121 rotation axis in Fig. 2, the 
coincidence site angle is found to be identical to 
that given by Equation 12 but with b~ = ~/3 a0 
and dv = ~/2 ao/2. Since reference to Fig. 8 
shows that three extra half planes are associated 
with b~ = ~/3 a0, the symmetric tilt boundary 
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corresponding to the (1 1 1) mirror plane will be 
comprised of one-third GBD. 

A symmetric tilt boundary of any rotation 
axis can, therefore, be constructed by employing 
the above procedures. It is to be emphasized that 
any grain boundary can be formed by suitable 
combinations of CLD and this provides the basis 
upon which the present analysis rests. One of 
the implications of this treatment is that the 
grain boundary may increase or decrease its angle 
0 only by having whole GBD with Burgers 
vectors given by Equation 2 either form or 
dissociate at the grain boundary, respectively. In 
the latter case, if the GBD are one-half or one- 
third etc GBD, they must first combine by climb 
since only the full GBD can dissociate into an 
integral number of GBD. 

2.1. The coincidence site latt ice 
References to Figs. 1 and 3-8 all show that each 
of the symmetric tilt boundaries possess a 
common unit cell. In fact, two distinct types of 
unit cell may be defined. On the one hand, there 
is a coincidence site lattice with respect to the 
projection of atoms or sites normal to the plane 
of the drawing. The coincidence site lattice 
site unit cells for this case are shown in heavy 
outline. On the other hand, the true coincidence 
site lattices, where the atoms do in fact coincide 
in space, are shown by the dashed line extensions 
of the previously defined projection type coin- 
cidence site lattices. It is apparent that the true 
coincidence site lattice unit cells are significantly 
larger than the projection type unit cells. On the 
other hand, because of their smaller size, it is 
somewhat more convenient to use the smaller 
unit cells and this procedure will be followed 
throughout the remainder of the present study. 
The grain boundary is seen to be coincident with 
one of the edges of the coincidence site lattice 
unit cells. Furthermore, each of the unit cells 
reflects the symmetry of the rotation axes, i.e. 
four-fold, two-fold and three-fold in Figs. 1, 3, 4 
and 5, 6, 8 and 7, respectively. The coincidence 
site lattice unit cell can be discussed in detail by 
reference to Fig. 9 which shows the unit cell 
corresponding to the 70.5 ~ boundary illustrated 
in Fig. 5. The coincidence site lattice unit cell 
edges are readily found to be 

boo = ~/[(Nb~) ~ + (Md~) 2] (13a) 
and 

a0o = boe/tan (0/2) = boe/(Nb~/Md~). (13b) 

In those cases where more than one extra half 
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Figure 9 Unit cell of primary coincidence site lattice 
shown in Fig. 5 for 0e v = 70.5. 

plane is associated with b~, i.e. when the GBD 
decompose into half GBD as in Figs. 3,4 and 6-8, 
b0e and a0c must be divided by the appropriate 
integer which represents the degree of GBD 
dissociation, e.g. 2 in the case of the above- 
mentioned figures. For the coincidence site 
lattice unit cells shown in Figs. 1, 3.4 and 7, the 
unit cell edges are all equal to boc. Note in 
particular in Fig. 7 that the unit cells have been 
drawn both as equilateral triangles, as well as 
hexagons. Both representations display the 
proper symmetry of the boundary, but from 
space filling arguments, the latter is perhaps more 
useful. Also evident from Fig. 9 is that two 
distinct Burgers vectors may be associated with 
the smallest interplanar spacings, namely bcGBa 
= aocl~/[N2+ 2M] = aocl~/3 and bcGl3b --- 
boeP/[N2+ 2M] = boer~3 where the subscript 
CGBb signifies the closest interplanar spacing 
associated with the coincidence site lattice 
unit cell along the b-axis. The magnitude of 
b0e 1~ in Fig. 9 is also equal to the spacing between 
GBD, either whole or partial. The above 
relationships could also be used in conjunction 
with Fig. 6 but with the roles of N and M 
interchanged. 

2.2. Primary and secondary GBD 
Two slip systems may be associated with each 
of the individual grains comprising the coinci- 
dence site boundaries shown in Figs. 1 and 3-8. 

A primary system is defined by planes with 
interplanar spacing d~ whose normals lie along 
the y direction and by Burgers vectors which lie 
along the x direction and possess a value of b~. 
In fact, all of the boundaries discussed thus far 
have been derived from CLD associated with the 
primary slip systems, i.e. N = 1 in Equation 1. 
On the other hand, a secondary slip system can 
be defined in which the slip plane normals lie 
along x while the Burgers vectors lie along the y 
direction. Appropriate values of d~ and b~ 
similar to those given by Equations 4 and 3, 
respectively, can be used for the secondary slip 
system by use of Fig. 2. In fact, the secondary slip 
system of Fig. 5 is just the primary slip system of 
Fig. 6 and vice versa. Having defined a primary 
and a secondary slip system, any grain boundary 
can be described in terms of some suitable 
combination of both [1, 2]. In addition, any 
equilibrium boundary, i.e. one containing no 
long range stresses, can always be defined in 
terms of a coincidence site lattice. Also, for any 
coincidence site lattice reference to Fig. 9 shows 
that two basic types of GBD may be defined as 
follows : 

bGBx = 2 b~ cos 0/2 [100] 
Mdu 

= 2b~ ~[(Nb~)2 + (Mdv)2 ] [100] 

(14a) 

bGBY = 2b~ sin 0/2 [010] 

Nbx 
= 2bx ~/[(Nbx) 2 + (Mdv)~ ] [010]. 

(14b) 

Equation 14a can be used to define the GBD 
which characterize the symmetric tilt component 
of the grain boundary while Equation 14b can 
be related to the asymmetric component of the 
grain boundary. Depending upon whether b~ 
corresponds to a single or multiple extra half 
plane, the Burgers vectors given by the above 
equations will correspond to full or partial GBD, 
respectively. In fact, if the GBD given by Equa- 
tions 10 are full, then they are simply com- 
binations of pairs of CLD from adjacent grains 
on the primary slip planes which can be expressed 
as 

bGB = bxl ~z b~ (15) 

where the plus sign pertains to Equation 14a 
while the minus sign refers to Equation 14b. 
The quantities b~ 1 and b~ are simply the vector 
components of CLD or combinations thereof 
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resolved along the x directions in grains no. 1 and 
2, respectively. 

2.3. Effect of atomic ordering on the 
coincidence site lattice 

Another interesting aspect of coincidence site 
lattices is the effect of atomic ordering thereon. 
Assuming a CsC1 type equiatomic AB type super- 
lattice, it is apparent from Fig. 1 that A atoms lie 
at A sites whereas B atoms lie at a sites. It can be 
seen from this figure that when N + M is odd, 
atomic ordering doubles the size of the coinci- 
dence site lattice unit cell. When N = M and is 
even, on the other hand, atomic ordering leaves 
the coincidence site lattice unit cell unaffected. 
These are the same results that were obtained 
for the case of the sc lattice [2] where the grain- 
boundary rotation vector was along [001 ]. For a 
[110] rotation axis, the situation is somewhat 
different. In the particular case shown in Fig. 5, 
atomic ordering leads to a doubling of the b-axis 
of the coincidence site lattice unit cell when N 
is odd but leaves the length of the a-axis un- 
changed. In the case of Fig. 6, on the other hand, 
atomic ordering does not affect the length of the 
b-axis but does lead to a doubling of the a-axis 
when M is odd. It follows, then, that each specific 
type of grain boundary must be analysed 
separately in order to discern the effect of 
atomic ordering upon it. Of course, when the 
true coincidence site lattice unit cell illustrated by 
the dashed lines is chosen, the rules must again 
be modified. In particular, atomic ordering has 
no effect on the true coincidence site lattice unit 
cell shown in Fig. 1 since for such unit cells M + 
N is always even. 

3. T w i s t  b o u n d a r i e s  
Having discussed the principles associated with 
symmetric tilt boundaries, it is a simple matter to 
extend them to symmetric twist boundaries. In 
particular, Fig. 10 shows the twist analogue of 
the 70.5 ~ tilt boundary shown in Fig. 5. Here 
again, a coincidence site lattice can be defined 
which is identical to that for the tilt boundary. 
However, unlike the case of the symmetric tilt 
boundary where only one side of the coincidence 
site lattice unit cell was coincident with the 
grain-boundary plane, all four sides of the unit 
cell now lie in the grain-boundary plane. In 
addition, it has been shown, using a simple cubic 
lattice, that the sides of the coincidence site 
lattice unit cells are coincident with GBD [4]. 
Note that for the symmetric tilt boundary, the 
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Figure 10 Symmetric high angle twist boundary with 
primary coincidence angle 0e P = 70.5 ~ in a bogy-centred- 
cubic lattice. Rotation axis is [1 10] and is normal 
to the drawing. 

GBD are coincident with the corners of the 
coincidence site lattice unit cell. It is also 
apparent from inspection of Figs. 5 and 6 that the 
horizontal array of GBD in Fig. 10 are full GBD 
while the GBD comprising the vertical array are 
half GBD. This is easily seen by noting that the 
vertical GBD pass alternately through all A 
sites or all a sites; i.e. every half period. Further- 
more these GBD shown in Fig. 10 can be 
visualized as being formed by the combination 
of one cross-grid of screw type CLD from grain 
no. 1 with a corresponding cross grid from grain 
no. 2 according to the reaction given by Equation 
15 with a plus sign. With these modifications in 
mind, all of the relations given earlier for the 
symmetric tilt boundary hold for the sym- 
metric twist boundary. The GBD associated 
with a twist boundary will reflect the symmetry 
of the twist axis in that they will form a square 
array for the [001 ] twist axis, i.e. four-fold sym- 
metry, a rectangular array for the [110] twist 
axis as in Fig. 10, i.e. two-fold symmetry, and an 
equilateral triangular array for the [111 ] twist 
axis, i.e. three-fold symmetry. Another interesting 
feature of the two-fold [110] twist axis in Fig. 
10 is that it reflects simultaneously the mirror 
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Figure 11 A s y m m e t r i c  h igh  angle  tilt b o u n d a r y  wi th  0e ~ = 70.5 ~ and  4, = 35.25 ~ in a body-cent red-cubic  

lattice as s h o w n  in Fig. 6. 

symmetry possessed by the tilt boundary in Fig. 
5 and that in Fig. 6. In particular, the symmetry 
shown in Fig. 6 can be arrived at in Fig. 10 
by a 90 ~ rotation about the twist axis. Similar 
relations can be obtained for different rotation 
axes. 

4. Asymmetr ic  tilt boundaries 
It is now possible to extend the previous argu- 
ments pertaining to symmetric boundaries to 
asymmetric ones as has already been done for 
sc crystals [3]. Consider for example, the case 
of the 70.5 ~ symmetric boundary in Fig. 6 which 
is made asymmetric as shown by the dotted line 
in Fig. 11. The asymmetry is measured by the 
angle ~, i.e. the angle that the mean boundary 
direction makes with the original symmetric 
boundary. In accordance with the discussions 
relating to Figs. 5 and 6, the grain boundary in 
Fig. 11 is seen to comprise of equal numbers of 
full and half GBD. It is immediately apparent 
that the asymmetric tilt boundary has associated 
with it its own unique coincidence site lattice and 
will be termed the asymmetric coincidence site 
lattice to distinguish it from the symmetric 
coincidence site lattice which is also outlined in 
Fig. 11. As in the case of the symmetric boun- 
dary, there are two ways in which the unit cell 
associated with the asymmetric coincidence site 
lattice can be described. It may be formulated in 
terms of the smaller unit cell outlined by heavy 

solid lines in Fig. 11 associated with atom 
coincidence with respect to projection on the 
plane of the drawing, or it may be described in 
terms of the true spatial atom coincidence where 
the unit cell is outlined by heavy dashed lines. 
Again, for convenience the smaller coincidence 
site lattice unit cell will be employed in the 
following discussion, where the unit edges are 
designated by a0e A and b0e A. 

The asymmetric boundary shown in Fig. 11 
can be visualized as being derived from the sym- 
metric one shown in Fig. 6 by passing CLD pairs 
of strength N' on the secondary slip planes of 
grain no. 1 at slip plane intervals given by M' 
on the secondary slip plane spacings. In the 
specific case shown in Fig. 11 it is apparent that 
N'  = 1 and M' = 2. In general, one may 
write 

N'bu 
tan (0/2 + r = M'  d~" (16) 

The above expression is simply the coincidence 
relationship for asymmetric tilt boundaries 
similar to that given by Equation 1 for sym- 
metric tilt boundaries. Again, as in the case of 
Equation 1 since N'  and M'  are discrete and since 
0 is fixed by Equation 1, r must possess discrete 
values, i.e. it cannot be a continuous variable. 
Thus, for each 0 there is a set of values for 6. 
It is also obvious from Fig. 11 that when6 -- ~r/2 
the asymmetric tilt boundary is converted to a 
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Figure 12 Relationship between crystal lattice, symmetric 
coincidence site lattice and asymmetric coincidence site 
lattice. 

new symmetric tilt boundary of the type shown 
in Fig. 5. 

It is also possible to describe the asymmetric 
coincidence site lattice unit cell of the asym- 
metric tilt boundary in terms of the symmetric 
coincidence site lattice unit cell of the symmetric 
tilt boundary. This can be most readily seen by 
reference to Fig. 12 which represents the same 
boundary as that shown in Fig. 11. From this 
figure it follows that 

N" a0e 
tan~ = - , (17) 

M b0e 

where N" corresponds to an integral number of 
unit cell lengths of the type a0e while M" corres- 
ponds to the number of unit cell lengths of the 
type boe. In the case of Fig. 12, both N" and M" 
are equal to unity. It also follows that 

boca = 4[(N"aoe) ~ + (m"b0e) ~] (lSa) 
and 
a0ea = b0eA/tan~ = boeA/(N"aoe/M"boe) (18b) 

which are relations similar to those given by 
Equation 13a and b for the symmetric coin- 
cidence site lattice unit cells. It is also interesting 
to note that the asymmetric coincidence site 
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lattice unit cells also possess the same symmetry 
as does the symmetric coincidence site lattice 
unit cells. If  the bcc lattice orders to the CsC1 
type superlattice configuration then it follows 
from inspection of Fig. 11 that the small asym- 
metric coincidence site lattice is doubled along 
both edges when N'  is odd and is left unchanged 
when N' is even. These results are somewhat 
different from those obtained for the symmetric 
coincidence site lattice unit cells shown in Figs. 
5 and 6 where atomic ordering doubled only one 
of the small unit cell edges of the disordered 
structure. 

It is also possible to define twist boundaries 
with tilt components by allowing a pure sym- 
metric twist boundary such as that shown in Fig. 
10 to rotate about any axis which lies in the plane 
of the boundary. As in the case of the asym- 
metric tilt boundary, a set of discrete boundaries, 
but of mixed type, will be generated by this 
kind of operation. These particular types of 
twist boundaries have been treated in greater 
detail separately [7]. 

5. General grain boundaries 
Having developed a detailed analysis of both 
symmetric tilt and twist and asymmetric tilt 
boundaries, it is a relatively simple matter to 
extend these concepts to a general grain boun- 
dary using the method of Bishop and Chalmers 
[8]. In particular, Fig. 13a shows a completely 
closed grain-boundary surface with rectangular 
faces. The top and bottom faces of the surface 
are comprised of pure symmetric twist type 
boundaries while the four side faces are of pure 
asymmetric tilt type. For conveniences, the 
twist axis ~ has been chosen parallel to [001] 
as in Figs. 1, 3 and 4 although it could easily 
have been chosen as any other axis such as 
[110], [111 ] or [112] as in Figs. 5 and 6, and 7 
and 8, respectively. From the standard grain- 
boundary surface shown in Fig. 13a, in which the 
coincidence site lattice unit cell edges a0e P and 
boe r may be made to coincide with the two sets of 
GBD in the cross grid, it is possible to represent 
a grain boundary of any selected orientation. In 
particular, Fig. 13b shows an asymmetric tilt 
boundary obtained by first making an oblique 
cut parallel to the rotation axis and then allowing 
the dislocations on the top and bottom faces to 
become continuous with one another across this 
new cut surface. In a similar manner, the two 
twist boundaries with tik components shown in 
Figs. 13c and d can easily be generated along 
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Figure 13 (a) Three-dimensional grain-boundary surface 
comprised of symmetric tilt and twist boundaries from 
which (b) asymmetric tilt (c) and (d) asymmetric twist 
boundaries can be generated. (e) Arbitrary grain boundary 
generated from Fig. 13a. 

with the more generalized grain boundary shown 
in Fig. 13e. Inspection of the various GBD 
configurations in Fig 13 shows that in general, 
the GBD will neither be parallel nor orthogonal 
to one another. 

All of the grain boundaries discussed thus far 
have been of the equilibrium or low energy type; 
that is, they possessed no long range stress 
fields. However, during the process of grain- 
boundary migration, such as occurs during grain 

growth or during plastic deformation, high 
internal stresses may be associated with the 
grain boundary. These internal stresses may arise 
from the presence of GBD, and/or wedge dis- 
clination dipoles and have been treated in detail 
elsewhere [1, 3, 9-11 ]. These particular defects 
will again be more appropriately considered in 
Part 2 of the present study. In concluding this 
section, it is to be emphasized that the present 
treatment of grain boundaries, although similar 
in many respects to that of Bollmann [12], is 
based almost exclusively on a dislocation 
approach. In particular, the present treatment 
starts from the premise that any grain boundary 
can be described in terms of a suitable com- 
bination of CLD from the two adjacent grains. 
The differences and similarities of the two ap- 
proaches have been detailed in earlier studies 
[2, 31. 

6. Summary and conclusions 
A unified theory of grain boundaries based upon 
a dislocation approach which was originally 
developed for simple cubic lattices has been 
extended to bcc and the related CsC1 type 
ordered lattices. In particular, both symmetric 
tilt and twist boundaries, as well as asymmetric 
tilt boundaries, have been treated for any 
number of different rotation axes. It is then shown 
how these results can be extended to boundaries 
of general type. A well-defined coincidence site 
lattice is found to be associated with both the 
symmetric as well as the asymmetric grain 
boundaries. Furthermore, a unique set of grain- 
boundary dislocations is, in turn, associated with 
each of the coincidence site lattices. The motiva- 
tion for the present studies was to understand the 
transmission electron microscopy study of grain 
boundaries to be presented in the following 
paper. 
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